На этой странице представлен обзор топовых курсов "data science" онлайн в 2026 году. Мы тщательно отобрали и составили рейтинг из 13 самых востребованных образовательных программ. Каждый из курсов оценён по многим параметрам, включая отзывы учащихся и качество обучения. Цены на курсы варьируются от 30960 до 219132 рублей, что позволяет выбрать оптимальный вариант в зависимости от ваших финансовых возможностей и образовательных целей.
Онлайн курсы
Популярный
Специалист Data Science
Eduson Academy
Рейтинг
4.95
Длительность
9 месяцев
Цена
162 120 ₽
Рассрочка
6 755 ₽
Новый курс!
Новый курс!
Акцент на практике
Поддержка куратора на год
Гарантия трудоустройства
Официальный диплом
Профессия data scientist
ProductStar
Рейтинг
4.91
Длительность
10 месяцев
Цена
112 752 ₽
Рассрочка
5 220 ₽
Новый курс!
Новый курс!
Трудоустроим в процессе обучения или вернем деньги
Создатели и спикеры курса - эксперты из Amazon, Yandex и Skyeng
Стажировки в компаниях-партнерах
Data science : быстрый старт
ProductStar
Рейтинг
4.88
Длительность
2 месяца
Цена
53 303 ₽
Рассрочка
2 468 ₽
Новый курс!
Новый курс!
Поможем с работой
Сами выбираете темп
Практика, а не теория
Доступ навсегда
Выгодный
Основы Data Science
SF Education
Рейтинг
4.85
Длительность
5 месяцев
Цена
30 960 ₽
Рассрочка
1 290 ₽
Новый курс!
Новый курс!
Эксперты курса - действущие профессионалы
Отработка языковых навыков для работы
Гранты на дальнейшее обучение
Профессия Data Scientist
Skillfactory
Рейтинг
4.82
Длительность
24 месяца
Цена
199 656 ₽
Рассрочка
5 546 ₽
Новый курс!
Новый курс!
Помощь в трудоустройстве
Центр карьеры
Сообщество экспертов
Стажировки
Профессия Data Scientist PRO
Skillbox
Рейтинг
4.80
Длительность
12 месяцев
Цена
219 132 ₽
Рассрочка
6 087 ₽
Новый курс!
Новый курс!
Трудоустройство после обучения
3 специализации на выбор
Стажировка через 6 месяцев
Data Scientist
ProductStar
Рейтинг
4.72
Длительность
6 месяцев
Цена
109 451 ₽
Рассрочка
5 067 ₽
Новый курс!
Новый курс!
Помощь с трудоустройством
Поддержка ментором
Акцент на практику
Профессия Machine Learning Engineer
Skillbox
Рейтинг
4.67
Длительность
12 месяцев
Цена
159 526 ₽
Рассрочка
5 146 ₽
Новый курс!
Новый курс!
Курс-профессия из 3 уровней
Стажировка через 6 месяцев
Год английского языка
Python, BI и BigData
ProductStar
Рейтинг
4.60
Длительность
6 месяцев
Цена
109 451 ₽
Рассрочка
5 067 ₽
Новый курс!
Новый курс!
Онлайн в удобное время
Обучение на практике
Data Scientist
Нетология
Рейтинг
4.58
Длительность
16 месяцев
Цена
111 900 ₽
Рассрочка
3 272 ₽
Новый курс!
Новый курс!
10 кейсов в портфолио
Помощь в трудоустройстве
Доступ в профессиональные сообщества
Профессия Data Analyst
Skillbox
Рейтинг
4.55
Длительность
12 месяцев
Цена
159 526 ₽
Рассрочка
5 146 ₽
Новый курс!
Новый курс!
Обучение на реальных данных
Гарантия трудоустройства
Стажировка через 6 месяцев
Математика для Data Science
Skillbox
Рейтинг
4.50
Длительность
3 месяца
Цена
38 244 ₽
Рассрочка
3 187 ₽
Новый курс!
Новый курс!
Практические задания
Доступ к курсу навсегда
Онлайн в удобное время
Профессия Data Scientist
Бруноям
Рейтинг
4.50
Длительность
8 месяцев
Цена
79 900 ₽
Рассрочка
6 658 ₽
Новый курс!
Новый курс!
1 год поддержки наставника после обучения
В курсе будет много практики и заданий с разным уровнем сложности
Менеджеры помогут выбрать курс, который вам действительно нужен
Обратная связь от преподавателя и наставника поможет выполнить задачу на 100%
Data Science — это самая перспективная специальность для дополнительного образования или смены профессии. Давайте рассмотрим, что из себя представляет Data Science и как в сфере работы с данными построить карьеру.
Чем занимается Data Scientist?
Дата-сайентист обрабатывает большие объемы информации, используя методы науки о данных. Специалист выстраивает, тестирует математические модели поведения данных, чтобы найти закономерность или дать прогноз. Модели строят с применением алгоритмов машинного обучения, а с базами данных, как правило, работают через SQL.
Где востребован Data Scientist и какие задачи решает?
Специалисты работают там, где есть большие объемы информации: крупные компании, стартапы и научные организации. Например, такие специалисты нужны для аналитики маркетплейсов, таких как OZON и WildBerries. Если же вам интересны сервисы для аналитики WildBerries, и вы не хотите сами пытаться обработать все данные по товарам и продажам, то эта подборка сервисов вам точно поможет. Выпускникам открыты любые сферы, ведь методы работы с данными универсальны. Это может быть розничная торговля, банк, метеорология, химия, наука. Специалисты реализуют долгосрочные проекты совместно с бизнес-аналитиками, аналитиками данных, разработчиками, администраторами, программистами, дизайнерами и менеджерами. Поэтому в крупных компаниях дата-сайентист будет нужен всем отделам:
маркетологам проанализирует данные карт лояльности и поможет понять, каким клиентам, что рекламировать;
логистам поможет оптимизировать маршрут перевозок с помощью изучения данных с GPS-трекеров;
HR-отделу поможет запланировать, кто из сотрудников скоро уволится. Для этого специалист проанализирует активность работников в течение рабочего дня;
продажникам поможет спрогнозировать спрос на сезонный товар;
юристам подскажет, что написано на документах, используя технологию оптического распознавания текста;
на производстве проверит данные с датчиков и спрогнозирует ремонт оборудования.
В стартапах специалисты участвуют в разработке технологий, выводящих продукт на новый уровень.
Что нужно знать?
Дата-сайентист должен хорошо знать математику, а именно теорию вероятности, статистику, линейную алгебру, математический анализ. Чтобы применять математические модели на практике, нужно владеть языками программирования Python или R, уметь работать с библиотеками и SQL и фреймворками для machine learning. Для выполнения сложных заданий специалистам стоит изучить язык С или C++. Результаты анализа данных нужно уметь визуализировать, например, с помощью доступных библиотек Seaborn, Plotly или Matplotlib.
Плюсы профессии
Профессия чрезвычайно востребована и даже существует острый дефицит специалистов такого уровня. Высокие доходы. Влияние на бизнес — от созданных моделей будет зависеть развитие компании и выручка.
Где и как зарабатывать на данных
Социальные сети, поисковые системы, медиа — сбор и продажа данных. Софтверные компании Google, Amazon, Яндекс — обслуживание данных. Компании, которые производят инновационную технику — разработка продуктов с data-решениями. Рекомендательные системы, сервисы прогноза погоды и другие полезные для пользователей сферы — извлечение из данных пользы. Самая обширная область последняя из перечисленных, ведь включает:
обнаружение аномалий — мошенничество, аномальное поведение клиентов;
скоринговые системы — обработка больших объемов данных и помощь в принятии решения;
базовое взаимодействие с клиентом — стандартное общение в чатах, сортировка по папкам писем.
Вопросы-ответы об обучении Data Science
Как стать Data Science и специалистом по искусственному интеллекту с нуля?
Сейчас самое время для входа в профессию, пока конкуренция невысока. Если владеете техническим бэкграундом пригодятся знания математики, останется освоить языки программирования и машинное обучение. Если интересны big data, готовы много учиться и работать, то в профессию можно войти с нулевыми знаниями. Первоначально пройдите курсы, а затем — участвуйте в соревнованиях на Kaggle и на мероприятиях. Не во всех компаниях надо знать все на отлично, достаточно хорошего понимания математики, знания языка программирования и машинного обучения.
С чего начать обучение?
Выберите специализацию, например, станьте специалистом по визуализации данных, машинному обучению или обработке данных. Делайте выбор направления учитывая навыки, образование, опыт и личный интерес.
Далее выбираем инструменты и языки программирования.
Пройдите платные или бесплатные курсы для начинающих. Систематизированная программа позволит овладеть ключевыми навыками: статистика, основы прикладной математики и программирования, работа с алгоритмами.
Применяйте полученные знания на практике. Во время прохождения курсов сосредоточьтесь на практическом применении изученного. Самые лучшие работы разместите в портфолио. А также закрепить знания поможет участие в конкурсах, соревнованиях и хакатонах по Data Science. Там ждет изучение машинного обучения, нейронных сетей и другие методы. Однако большую часть работы над проектом составляет очистка и подготовка данных к анализу. Участвуя в соревнованиях, научишься работать с несколькими типами данных и хорошо подготовишься к реальным проектам.
Вступите в сообщество Data Science.
Развивайте коммуникативные навыки. Самое основное в профессии — умение донести идею и сложную концепцию простым языком до широкой аудитории. Это важно в бизнесе, где заказчики проекта не владеют техническими навыками и терминологией.
Не переставайте учиться. Работа предполагает регулярное изучение новых методов и технологий. Информацию можете черпать из постов, блогов в соцсетях, которые ведут влиятельные спикеры.
Найдите наставника, который будет готов ответить на ваши вопросы об особенностях работы в команде Data Science. Ведь новичку так важна поддержка и советы успешного специалиста.
Займитесь трудоустройством, составьте резюме и приготовьтесь строить карьеру.
Сложно ли найти работу?
Специалист по Data Science может найти себе работу в любой отрасли: от розничной торговли до астрофизики. В любой организации специалист с серьезными теоретическими знаниями и практическим опытом в сфере данных является ключевой фигурой. Чтобы достичь высот, следует упорно и целенаправленно работать, постоянно совершенствоваться и изучать новые методы.
Data Scientist востребован в:
технологических отраслях (система автонавигации, производство лекарств);
финансовых структурах (принятие решения о выдаче кредита);
телекомпаниях;
крупных торговых сетях;
избирательных кампаниях.
Что выбрать комплексные курсы или самостоятельное обучение?
Большинство литературы по профессии на английском языке, поэтому при самостоятельном обучении придется тратить время не только на поиск, но и на перевод. А можно пройти полную подготовку, выбрав курс из нашей подборки. Комплексные курсы по data science имею следующие плюсы:
Есть весь необходимый материал, поэтому освоить профессию получится быстрее;
Выстроена траектория обучения;
На курсах изучают реальные кейсы. Поэтому начинаешь моментально применять полученные знания на практике;
После завершения студентам выдают сертификат.
Частые вопросы
Среди основных инструментов можно выделить Python, библиотеки для анализа данных как Pandas, NumPy, и средства для машинного обучения, такие как scikit-learn и TensorFlow.
Хотя высшее образование может быть полезным, многие компании все больше смотрят на навыки и портфолио. Сильный опыт и проекты могут заменить диплом.
Создайте свое портфолио, работая над персональными проектами или участвуя в соревнованиях по анализу данных и машинному обучению, например, на Kaggle.
"Мягкие навыки", такие как коммуникация и работа в команде, очень важны, поскольку Data Scientists часто работают в мультидисциплинарных командах и должны объяснять сложные концепции непрофессионалам.
Задачи могут быть очень разнообразными: от анализа пользовательского поведения до оптимизации логистических маршрутов. Всё зависит от сферы и специфики компании.
Избегайте переобучения моделей и недооценки значимости "мягких навыков". Также не зацикливайтесь только на одном типе задач или инструментах.
Устроиться без опыта сложнее, но не невозможно. Наличие хорошего портфолио и активное участие в профессиональных сообществах может значительно упростить этот процесс.
Онлайн-курсы по Data Science обычно предлагают гибкий график, позволяющий изучать материал в удобное время. Формат включает видео лекции, интерактивные практикумы под руководством опытных инженеров и домашние задания для закрепления материала. Продолжительность курсов варьируется от нескольких недель до нескольких месяцев, в зависимости от сложности и объема программы.
Курсы по Data Science охватывают широкий спектр тем, начиная от введения в основы данных и программирования до продвинутых техник машинного обучения (ML), анализа данных с использованием Excel и Python, создания нейросетей и системной аналитики. Курс также может включать разработку и тестирование приложений под руководством опытных руководителей.
Стоимость курсов по Data Science может сильно варьироваться в зависимости от образовательной платформы, длительности и уровня курса. Многие платформы предлагают скидки для студентов, новых пользователей или групповые скидки. Для получения актуальной информации о стоимости и скидках рекомендуется посетить официальный сайт образовательной платформы.
Обучение под руководством опытных специалистов IT и Data Science обеспечивает высокое качество образования, актуальность преподаваемых знаний и практических навыков. Студенты имеют возможность учиться на реальных примерах, получать индивидуальную обратную связь и консультации, что значительно ускоряет процесс обучения и повышает его эффективность.
Знания, полученные на курсах по Data Science, особенно в аналитических методах, машинном обучении и обработке больших данных, могут быть эффективно применены для анализа финансовых данных, прогнозирования трендов и принятия обоснованных финансовых решений.
После успешного завершения курсов по Data Science вы можете искать вакансии такие как Data Scientist, аналитик данных, инженер по машинному обучению (ML Engineer), специалист по нейросетям и NLP, системный аналитик и многие другие. Рынок труда постоянно расширяется и предлагает множество возможностей для квалифицированных специалистов.
Для оценки качества и актуальности курса по Data Science рекомендуется исследовать информационные материалы на официальном сайте платформы, прочитать отзывы выпускников, оценить квалификацию преподавателей и анализировать предлагаемые учебные материалы и проекты.
Да, многие курсы по Data Science включают в себя работу над реальными проектами под руководством опытных специалистов. Это дает студентам ценный опыт решения практических задач, создания портфолио и применения теоретических знаний на практике.
В рамках курсов по Data Science студенты обучаются работе с современными инструментами и технологиями, включая программирование на Python, анализ данных с помощью Excel и специализированных библиотек, создание и тестирование моделей машинного обучения, использование нейросетей и многое другое.
Для самостоятельного изучения Data Science можно искать образовательные материалы на специализированных платформах онлайн-образования, вебинары, научные статьи и руководства в интернете. Также многие университеты и образовательные платформы предоставляют бесплатный доступ к учебным курсам и лекциям.
Проходил этот курс, доступно объясняют, всё структурировано и по полочкам. Помогло понять что к чему в программировании, т.к. по образованию я экономист. Сейчас развиваюсь дальше, изучаю python уже сам, изучаю более сложные вещи. А так для новичков это самое то
Ксюша
19 апреля 2021
Проверен
Проходить курс очень комфортно
Если планируете совмещать работу с учебой, этот курс для вас. Долго не могла найти подходящий курс по дизайну и остановилась в школе Skillbox. Курсы сбалансированы, просмотреть лекции можно в любую свободную минуту, например, в транспорте, утром за завтраком или вечером в машине.
Программа состоит не только из базовых понятий по дизайну, но и более глубоких знаний. Подача материала продумана детально, сложность постепенно увеличивается, так что курс дается легко и понятно, хотя опыт в этой области у меня нулевой. Огромная благодарность преподавателям, они поддерживают, подсказывают при выполнении работ и указывают на ошибки. Достигнутыми результатами полностью довольна, нисколько не жалею потраченных сил и времени.
Дмитрий
20 апреля 2021
Проверен
Очень полезно
Курс длился 4 месяца. Этого вполне достаточно, чтобы получить необходимый багаж знаний для работы smm-менеджером. На курсе рассматривались разные сферы современной профессии. Удалось разобраться с такими актуальными понятиями, как продвижение, аналитика, интерактив, контент, стратегии. Обучение проходит онлайн. Нет необходимости присутствовать на занятиях только в то время, когда выкладывают уроки. Это очень удобно, так как я имею возможность изучать материал в любое свободное время для меня. Сразу видно, что преподаватели давно работают в этой сфере – информацию подают понятно и интересно. Особо скучать не приходилось. Разобрался во многих моментах, которые, как новичок, ранее не понимал. Всегда интересовало продвижение продуктов в соцсетях: как это сделать правильно, какие эффективные методы использовать, - на курсе получил все ответы на вопросы. Не ожидал такого результата. Вся информация подается доступным образом. Плюс ко всему, весь материал остается навсегда, поэтому им можно будет воспользоваться, когда угодно. Выдали сертификат и теперь могу работать в этой области.
Отзывы Skillfactory
Александр Никитин
25 мая 2021
Проверен
Очень удобный процесс обучения
Я человек не устремленный, поэтому перед тем, как записаться на курс по обучению Питон уже пробовал себя в программировании. Каждый раз, когда я начинал посещать курсы, то бросал их, как только мне что-то было не понятно. Возможно, еще не время было или не та методика преподавания, не могу сказать. В этот раз я пообещал себе, что пройду обучение до конца. После нескольких неудачных попыток бесплатного обучения по ютуб я записался на платные курсы с помощью программы. Обучение с нуля самостоятельно мне бы не подошло, хотя я давно усвоил основы знаний Python. Меня сильно стимулировали дедлайны на выполнение практики. Отлично, что было с кем обсудить возникшие вопросы во время обучения. Я всегда делал больше, чем задавали домой.
Материал объяснялся доходчиво, преподаватели постоянно помогали в случае возникновения вопросов. Программа действительно четкая и полезная. Конечно, еще есть чему учиться далее, но курс стоит вложенных денег и потраченного времени. Я рад, что прошел этот путь и уже могу самостоятельно создавать проекты. Рекомендую всем желающим. Но, если у вас нулевой уровень будет очень сложно.
Курс работает в удобном режиме, вы можете обучаться в свободное время. В любое время можно поменять курс обучения, если это не твой уровень.
Я планирую себе найти работу Full-stack разработчика, сейчас ищу достойную плату. Я доволен полученными знаниями, познакомился с интересными людьми, с которыми у меня много общих интересов. Спустя 2 месяца с момента прохождения курсов у меня есть интересные проекты, которые я ищу на сайтах по фрилансу. Пока это простые landing page, но без практики не достичь вершин.
Vacu4
13 ноября 2022
Проверен
Выбранный курс очень нравиться, материалы даются очень понятно.
Решил взять курс "Старт в IT", в котором рассматривались 9 IT-специальностей. По итогу курса выбрал направление "Разработка мобильных приложений на Андроид" и не сколько не пожалел. Менторы и кураторы очень внимательны к обучающимся и помогают, если что то не понятно.
На своём текущем месте работы последние несколько месяцев думаю о том, что хочу сменить направление деятельности и заняться аналитикой в сфере финансов. Оконченное высшее экономическое образование у меня есть, но за 10 лет многое забылось, захотелось освежить знания и углубиться в практику.
Навязчивая реклама онлайн-школ преследует абсолютно везде, и я всерьез задумалась, а не попробовать ли и мне получить профессию онлайн? Сравнивала несколько школ, но более убедительными оказались именно координаторы курсов Skillsactory, в итоге я купила курс "Финансовый аналитик")))
Сейчас я обучаюсь 2 месяца ( впереди еще 5), в целом обучение нравится, материал доступно изложен, менторы помогают в течение заявленного времени. Трудно пока сказать, насколько материал полный и хватит ли для работы, думаю изучать самостоятельно можно много при желании. Я бы добавила еще материал для самостоятельного чтения в конце каждого раздела.
Единственное, модуль по решению практических задач в Excel очень сжатый, в отличие даже от Google-таблиц, на практике же многие организации строят аналитику именно в этой программе. Думаю, буду Excel изучать дополнительно.
Еще минус - именно по этой программе нельзя сделать вычет НДФЛ, почему-то она у них не лицензирована...
Решил увеличить свои шансы на хорошее трудоустройство и на последнем курсе института параллельно решил пройти курсы в области IT. Проект позволяет в очень удобной форме получить качественное образование. Я прошел курс "Data Scientist: с нуля до middle" и остался очень доволен. Каждое занятие — это полное погружение в тему вместе с экспертом в области. Курс разбит удобно на модули, что позволяет быстро усвоить массу полезной информации. Хочется отметить подход преподавателей в подготовке к занятию и качество проверки домашних заданий. Если я что-то выполнял не так, как нужно, преподаватели указывали на ошибку и подробно разбирали ее, чтобы исключить повторное появление. Всегда только актуальная информация, систематизированные знания и опытные эксперты. Ещё спасибо за оперативные ответы на все вопросы и помощь в написании дипломной работы.
Паша
19 апреля 2021
Проверен
Очень много практики
Образовательной программой доволен на 100%. Группа была маленькая и это большой плюс во время дистанционного обучения. Все вопросы удавалось оперативно проработать, преподаватель может индивидуально с каждым побеседовать и дать персональные советы по проектам. Вообще, контакт с преподавателями отличный, хотя я сомневался, все-таки дистанционный формат обучения.
Вообще, я специалист из другой области, но недавно понял, что надо осваивать новые области, повышать квалификацию и становиться специалистом широкого профиля.
По окончании программы каждому помогли со стажировкой. А практика – это самый действенный способ закрепить полученные знания. Разместил резюме в интернете и уже собираю предложения.
Сергей
04 июля 2021
Проверен
За такую стоимость - это супер курс!
Уже начинал обучаться самостоятельно год назад, но не хватило терпения. Искал самый лучший курс, выбрал Нетологию (хотя курсы по геймдизайну предлагают все крупнейшие образовательные компании). В этом же курсе мне понравилась цена - со скидкой составила всего 60к. Сейчас уже завершаю прохождение и с уверенностью могу сказать, что этот курс идеально рассчитан на тех, кто только начинает обучение. Дается только актуальная информация от крутых и опытных преподавателей, проверяют домашние задания, подсказывают что не так. В общем я рад, что не пожалел денег и попал сюда. Рекомендую!